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High-order shock capturing schemes for turbulence calculations
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SUMMARY

This work investigates high-order central compact methods for simulating turbulent supersonic flows that
include shock waves. Several different types of previously proposed characteristic filters, including total
variation diminishing, monotone upstream-centered scheme for conservation laws, and weighted essentially
non-oscillatory filters, are investigated in this study. Similar to the traditional shock capturing schemes,
these filters can eliminate the numerical instability caused by large gradients in flow fields, but they also
improve efficiency compared with classical shock-capturing schemes. Adding the nonlinear dissipation
part of a classical shock-capturing scheme to a central scheme makes the method suitable for incorporation
into any existing central-based high-order subsonic code. The amount of numerical dissipation to add is
sensed by means of the artificial compression method switch. In order to improve the performance of the
characteristic filters, we propose a hybrid approach to minimize the dissipation added by the characteristic
filter. Through several numerical experiments (including a shock/density wave interaction, a shock/vortex
interaction, and a shock/mixing layer interaction) we show that our hybrid approach works better than
the original method, and can be used for future turbulent flow simulations that include shocks. Copyright
q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation of high speed turbulent flows can be applied in many fields, such as
helicopter/propeller/fan blade tips operating at supersonic speeds, mixing enhancement in a
supersonic combustion ramjet engine, and supersonic jet noise, which is the application we are
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interested in. The common features of these flow fields are vortices and shocks. A high-order
central scheme is required to preserve the vortical flow structures; however, it does not have shock
capturing ability. At the same time, traditional shock capturing schemes are usually too dissipa-
tive and not suitable for turbulence simulations. In order to capture the shocks while preserving
the vortical flow structures, this study investigates numerical methods for extending subsonic
turbulence calculations, based on large eddy simulations (LES) or direct numerical simulation
(DNS), to supersonic flows that include shocks. This serves as an approach toward supersonic jet
simulations.

Jet noise is the main source of noise during aircraft takeoff. Owing to the strict regulations
regarding noise emission, the cost of operating current commercial aircraft has increased and the
expansion of air travel has been stifled. Even when airplanes are cruising far from populated areas,
jet engine noise is still a serious issue for passenger comfort. Noise issues become more severe
for supersonic aircraft and some subsonic commercial jets (such as the Boeing 777 and 787) with
high bypass ratio engines. In addition to the turbulent mixing noise, when a supersonic jet engine
operates at an off-design condition shock cell noise can be generated. In order to help us gain a
better understanding of supersonic jet noise and develop a reliable prediction tool, we follow a
high-order computational fluid dynamics approach that provides an efficient way to achieve these
goals.

High-order central numerical methods are typically used in DNSs and LES of turbulent flows
as well as in computational aeroacoustics. This is because high-order schemes can resolve a wider
range of length scales than traditional second-order accurate methods and they reduce dissipative
numerical errors. However, they are often perceived as less robust and hard to code due to the large
stencil size required. The compact method proposed by Lele [1] can remedy this problem. For the
same order of accuracy, by solving for the flux derivative implicitly, a smaller stencil size is required
than for explicit central-difference schemes and, therefore, the boundary condition treatment is
simplified. In addition, the compact schemes contain a smaller truncation error compared with
non-compact schemes of equal order. However, in order to eliminate high-frequency errors that
give rise to numerical instabilities while retaining high-order accuracy, filtering of the computed
solutions is required. Either explicit or implicit spatial filters can perform this task. The role of a
spatial filter is similar to that of the more popular artificial dissipation method, but the derivation
of the former approach is relatively less dependent on the governing equations being solved [2, 3].
The compact scheme combined with spatial filters has been used successfully in three-dimensional
LES for turbulent jet noise prediction by several investigators [4–6].

When the flow field includes shocks or large gradients, the application of a compact scheme and
a spatial filter in these regions results in spurious oscillations and causes numerical instabilities.
Therefore, unlike the artificial dissipation method, the spatial filter is inadequate for predicting
high speed flows that involve shocks. One approach is to modify the compact scheme, as done by
Xie et al. [7]. Another approach is to use filters. Yee et al. [8] proposed another class of filters,
called characteristic filters, which add the dissipative part of traditional shock capture schemes to
nondissipative central-based schemes to damp out numerical instabilities caused by shocks. Owing
to this feature, characteristic filters are very suitable to incorporate into existing LES codes based
on high-order central methods, and they enhance the codes to have shock capturing capability.
In addition, since these filters can be applied to solutions once after each full time step, their
computational cost is considerably less than that of traditional shock capturing schemes such as
total variation diminishing (TVD), monotone upstream-centered scheme for conservation laws
(MUSCL), and (weighted) essentially non-oscillatory (ENO/WENO) schemes.
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It has been shown that in turbulent flows or in aeroacoustics the application of these traditional
shock capturing schemes in the entire domain is not very suitable, because they can lead to
significant damping of the turbulent or acoustic fluctuations [9, 10]. Our numerical experiments
show that the same phenomenon happens for the application of characteristic filters. In order to
remedy this problem and to achieve minimal dissipation, we propose a hybrid approach which
combines the compact scheme, spatial filter, and characteristic filter. In other words, by using a
shock detecting function, the characteristic filter can be applied only in the large gradient regions
(i.e. shocks) and the implicit spatial filter is applied to other smooth regions instead. This approach
is similar to the hybrid compact-Roe scheme of Visbal and Gaitonde [11].

In this work, we examine several different types of characteristic filters, including the TVD and
MUSCL types proposed by Yee et al. [8], and the ENO/WENO-type proposed by Garnier et al.
[12]. The formulations of the governing equations, various types of filters, and shock detectors
are presented in Section 2. In Section 3, we evaluate the performance of different characteristic
filters through several test cases. We also compare the results of applying the characteristic filters
in the whole computational domain and in the shock regions only. Finally, the conclusions are
summarized in Section 4. An earlier version of this work can be found in Reference [13].

2. NUMERICAL METHODS

2.1. Governing equations

The governing equations are the nondimensional compressible Navier–Stokes equations written
in conservation form. In two-dimensional space the governing equations written in Cartesian
coordinates have the following form:
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where t is nondimensional time, � is the density, u and v are the x and y velocity components,
respectively, e is the total energy, and P is the pressure. �i j and qi are the viscous stress tensor
and conductive heat flux, respectively.
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2.2. Time advancement scheme

Two time advancement schemes are used in the current study. The first one is the third-order
accurate TVD Runge–Kutta method proposed by Shu and Osher [14]

U (1) =Un+�t L(Un) (3)

U (2) = 3
4U

n+ 1
4U

(1)+ 1
4�t L(U (1)) (4)

Û n+1= 1
3U

n+ 2
3U

(2)+ 2
3�t L(U (2)) (5)

The second one is the classical fourth-order Runge–Kutta method which has the form
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where L represents the right-hand side of the Navier–Stokes equations evaluated using a base
spatial differencing scheme which can be any high-order non-dissipative method, such as that
described in the following section, and �t is the time step.

2.3. Base spatial discretization scheme

To compute spatial derivatives, the sixth-order non-dissipative compact finite difference scheme
developed by Lele [1] is used for the current study. The method is formulated as follows:

1

3
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3
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9�x
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36�x
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where f ′ is the derivative of the function f . Computation of the derivative f ′ requires solution
of a tri-diagonal linear system of equations. However, the implicit nature of the scheme allows
for a smaller stencil size (hence, the name compact scheme), which makes implementation near
boundaries easier. In addition, this method has better spatial wave number resolution than explicit
methods of the same order of accuracy. When a nonuniform grid is used, such as in the mixing
layer test problem, the nonuniform grid in physical space is mapped onto a uniformly spaced
computational grid and the difference formula is applied on the uniform grid.

2.4. Low-pass spatial filter

The compact scheme is a high-order accurate, non-dissipative, centered scheme. However, like
other centered schemes, it produces high-frequency spurious modes that originate from nonperiodic
boundary conditions, stretched grids, or nonlinear interactions, and cause numerical instabilities.
In order to eliminate these spurious modes and keep the scheme stable, filtering of the computed
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solution is employed. The tenth-order tri-diagonal spatial filter proposed by Gaitonde and Visbal
[15] is used for the current study. This compact-type filter is applied to the conservative variables
once per time step. Denoting the pre-filtered value by Û (which is the solution after a full Runge–
Kutta time step described in the above section), the filtered value, Ū , is obtained by solving the
system

� f Ūi−1+Ūi +� f Ūi+1=
N∑

n=0

an
2

(Ûi+n+Ûi−n) (12)

where an are filter coefficients and N =5 for tenth-order accuracy. � f is a filter parameter that
controls how much of the high wave number range is filtered. In this study, � f is set to 0.48. As
the filter is applied only once per time step, its cost is not as significant as that of the compact
spatial derivative when time advancing the governing equations.

2.5. Characteristic (ACM) filter

Even though compact spatial filters can suppress numerical instabilities due to high-frequency
modes, they fail around large gradients and discontinuities. Yee et al. [8] proposed characteristic-
based filters which can maintain the non-dissipative nature of high-order spatial differencing
schemes away from shocks, while being capable of capturing shocks. The basic idea is to add
the filter numerical flux which is computed from the nonlinear dissipation of a TVD, MUSCL, or
ENO/WENO scheme to the non-dissipative high-order central scheme. The filter operator, L f , is

L f (F
∗,G∗)i, j = 1

�x
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i+1/2, j − F̃∗
i−1/2, j )+

1

�y
(G̃∗

i, j+1/2−G̃∗
i, j−1/2) (13)

where F̃∗ and G̃∗ are the x and y direction filter numerical fluxes evaluated using Û n+1 (which is
the solution after a full Runge–Kutta step described in Section 2.3). Then, the filtered value, Ui, j ,
at the new time level n+1 becomes

Un+1
i, j =Û n+1

i, j −�t L f (F
∗,G∗)i, j (14)

This filtering process can be applied either at the end of a full time step or after each sub-stage of
a Runge–Kutta integration. For computational efficiency, in our current study we use the former
approach.

The Harten switch [16] (originally designed for the self-adjusting hybrid schemes) can switch
from a higher-order scheme to Harten’s first-order artificial compression method (ACM) scheme
for shock capturing. Instead of switching to a first-order scheme, following the idea of the ACM
method, a low-dissipative high-order shock-capturing scheme can be achieved by using a nonlinear
characteristic filter [8]. The nonlinear dissipation is multiplied by the Harten switch. This switch
signals the amount of nonlinear dissipation to be added to the base scheme. The general formulas
of the filter numerical flux from Yee et al. [8] are summarized as follows:

F̃∗TVD/MUSCL
i+1/2, j = 1

2 Ri+1/2�
∗
i+1/2 (15)

�l∗
i+1/2=��li+1/2�

l
i+1/2 (16)

where Ri+1/2 is the right eigenvector matrix of the flux Jacobian �F/�U evaluated by Roe’s
approximate average state [17]. F and U are the x direction convective flux and the conservative
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vector as defined in the previous section; �l∗
i+1/2 are the elements of �∗

i+1/2 with �l
i+1/2 evaluated

by a TVD or MUSCL scheme; � is a problem-dependent parameter with a range 0.03���2. Our
numerical experiments show that TVD and MUSCL filters are more sensitive to the choice of �
than the WENO filter. In order to make a comparison between filters, � is fixed at 1 for all the
cases in this paper. For the choice of optimized values of � in different cases, the reader should
refer to the original Reference [8] for more details. �li+1/2 is the Harten switch that has the form

�li+1/2=max(̂�
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i−m+1, . . . , �̂

l
i+m) (17)
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�li+1/2 are the elements of R−1
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i+1/2) for MUSCL.

Yee et al. [8] modify this switch to �li+1/2=max(�̂
l
i , �̂

l
i+1) and set p equal to 1, and we follow

Yee’s formulas in the current study.
Three variations of the TVD scheme [18]—the Harten–Yee upwind (HYTVD), the Yee–

Roe–Davis symmetric (YRDTVD), and the Roe–Sweby upwind (RSTVD)—are compared in the
following section. For brevity, the detailed TVD formulas are not shown here and can be found
in the original references. The limiters used with the TVD methods are minmod(�li−1/2,�

l
i+1/2)

for the HYTVD, minmod(2�li−1/2,2�
l
i+1/2,2�

l
i+3/2, (�

l
i−1/2+�li+3/2)/2) for the YRDTVD, and

minmod(1,r) for the RSTVD, where the formula for r can be found in the same reference. In [19]
it is pointed out that less dissipative results can be obtained with the HYTVD scheme by using a
different limiter; however, only the limiters given above are used in the current study.

The MUSCL-type scheme [18] is summarized as follows:
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where � is the Harten entropy correction function, and ali+1/2 and Ri+1/2 are the eigenvalues

and eigenvectors of the flux Jacobian �F/�U evaluated using a symmetric average of UR
i+1/2

and UL
i+1/2 (i.e. Roe average). In here, UR

i+1/2 and UL
i+1/2 are evaluated by an upwind-biased

interpolation from neighboring grid points with the minmod limiter imposed and the compression
factor within the minmod limiter equal to 4.

Garnier et al. [12] proposed a characteristic filter using the ENO/WENO scheme. The dissipative
numerical flux is written as

F̃∗ENO/WENO
i+1/2, j = Ri+1/2�

∗
i+1/2 (21)

�l∗
i+1/2=��li+1/2�

l
i+1/2 (22)

Here, �l
i+1/2 is obtained by subtracting an mth-order centered scheme (FC ) from an r th-order

ENO/WENO scheme (F), as follows:

�l
i+1/2=F−FC (23)
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where F and FC are numerical fluxes, which are interpolated from nearby grid points by the
ENO/WENO approach. Either the Roe-type or the flux splitting-type ENO/WENO scheme can
be chosen. Our current study implements the latter one with the local Lax–Friedrichs splitting
technique. This ENO/WENO filter with a fourth-order central-based scheme has been used in a
LES simulation of 3-D shock/boundary-layer interaction [20], and the results show a very good
agreement with the experimental data. There are other similar WENO filters in Reference [21, 22]
and a detailed formulation of the ENO/WENO scheme can be found in Reference [23].

2.6. Shock detectors

As reported by Lee et al. [10] the use of a 6th-order accurate ENO scheme for the entire domain
adds too much dissipation such that turbulent fluctuations are excessively damped. Our numerical
experiments show that a similar situation happens for the low-order filter (e.g. TVD filter) when
using it in the entire domain. Another problem is that when the high-order compact spatial filters are
used with shocks or large gradients, spurious oscillations occur resulting in a numerical instability;
therefore, they cannot be used in the entire domain either. In order to address these problems, a
shock detector can be used as a sensor to switch between the spatial filters and the ACM filters.
Defining the shock detector function, �i , and a threshold parameter, 	, the ACM filter is then
applied locally in the region where a threshold criterion is exceeded, given by �i>	. A single
value of 	=0.01 is used in our work, and the effects of the choice of 	 are investigated in the
following section.

After identifying the shock region, the switch between the ACM filter and the spatial filter near
the shock region is illustrated in the schematic of Figure 1. Within the shock region, including shock
points and two buffer points on each side, we apply only the ACM filter and disable the spatial
filter. This is done by setting the filter parameter, � f , to 0.5 in the shock region. Outside the shock
zone, the order of the spatial filter gradually increases from second order (F2) to tenth order (F10).
Because of the buffer points, the stencil of the spatial filter does not include the shock points.

For multi-dimensional turbulent simulations, Ducros et al. [24] proposed a shock detector which
is capable of distinguishing turbulent fluctuations from large gradients and shocks. This is done

Figure 1. Schematic of hybrid compact scheme, ACM filter and the order of the spatial
filter near the shock region.
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by multiplying the Jameson sensor [25] by another factor proposed by them, that is

�i =
∣∣∣∣ Pi+1−2Pi +Pi−1

Pi+1+2Pi +Pi−1

∣∣∣∣ (div(u))2

(div(u))2+(rot(u))2
(24)

where P and u are the pressure and velocity vector, respectively. Obviously, the second part of
the sensor cannot be used in one-dimensional problems; therefore, it is only used in our two-
dimensional test cases.

For the one-dimensional study, a WENO-type smoothness criterion [11] is used as a shock
detector, which is given by

�i =[a(Pi+1−Pi−1)
2+b(Pi+1−2Pi +Pi−1)

2]n (25)

where a and b are defined in the fifth-order WENO scheme (i.e. a= 1
4 and b= 13

12 ), and n is set
equal to 2 in order to sharpen the shock detection region. P is the pressure. Here the WENO
smoothness criterion is used only for the shock detector and it is not related to the accuracy of
the spatial discretization. A more sophisticated shock detection scheme is available in [26] (with
source code available in [19]), although in the current study we only consider the two shock
detectors listed above.

3. NUMERICAL EXPERIMENTS AND DISCUSSION OF RESULTS

3.1. Shock tube problem

The first case is a 1-D quite mild shock tube problem. This case is just used to illustrate the
influence of shocks on the compact scheme and spatial filter. The computation covers a domain
x ∈[0,1] and the nondimensional initial condition is specified as

[�,u, P]=[1,0,3] for x<0.5 (26)

[�,u, P]=[1,0,1] for x�0.5 (27)

and it generates a Mach 1.35 moving shock. Since this shock is weak, the numerical oscillations
generated by the compact scheme do not cause the solver to crash by the output time. The solution
is integrated with a CFL number equal to 0.01 until t=0.15. A uniform mesh with a total of 201
grid points is used in this case. The reference solution is computed by an exact Riemann solver.

We compare two different approaches: the compact scheme plus the spatial filter, and the
compact scheme plus the characteristic filter, and show that the spatial filter is not applicable in the
high gradient (or shock) regions. The characteristic filter we use in this case is the WENO filter.
It is well known that computing with the compact scheme alone generates significant oscillations
around the shock, contact discontinuity, expansion fan, and boundaries. Most of these oscillations
can be damped out if we add the spatial filter as shown in Figure 2. However, we still can see
some oscillations near the shock and contact discontinuity. If the shock strength increases, these
oscillations will also increase and finally cause the solver to crash. Therefore, the spatial filter
cannot be used in the shock region. If we replace the spatial filter with the characteristic filter then
we can damp out all the oscillations, as shown in the same figure.

In order to understand the maximum allowable moving shock Mach number for each type of
ACM filter, we perform several numerical experiments on this 1-D shock tube problem. This is
done by increasing the left initial pressure in Equation (26) (hence, the initial pressure ratio and the
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Figure 2. Comparison of spatial filter, and characteristic filter. (201 points uniform mesh.)
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Figure 3. Comparison of a Mach 4.2 moving shock. (201 points uniform mesh. The x coordinate is shifted
by 0.05 for each successive case for clarity.)

moving shock Mach number). Numerical experiments show that all three types of characteristic
filters (HYTVD, MUSCL, and WENO) can resolve a Mach 4.2 moving shock without significant
oscillation. Figure 3 shows the enlarged view of this Mach 4.2 moving shock computed by each
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Figure 4. Mach 8.9 moving shock computed by the WENO filter. (201 points uniform mesh.)

filter at the same time. The exact solution (computed by an exact Riemann solver) is also given by
a solid line for comparison with each numerical solution. The x axis is shifted by 0.05 for each
case to increase readability. It is worth mentioning that the WENO filter can even resolve a Mach
8.9 moving shock, as shown in Figure 4. At this Mach number the maximum amplitude of the
oscillations in pressure is still less than 1.0% of the pressure jump across the shock. Note, however,
that the pressure in the driven section is low, and beyond this Mach number oscillations result in
a negative value of pressure and failure of the solver. It should be noted that the goal of testing
this case is not to show excellent agreement. Instead, we are testing the limits of the method.

3.2. Shock/density oscillation interaction

This test case is a 1-D inviscid moving shock/density wave interaction [14], which consists of
the interaction of a moving Mach 3 shock with a density fluctuation. The nondimensional initial
condition is specified as

[�,u, P]=[3.857143,2.269369,10.33333] for x<−4 (28)

[�,u, P]=[1+0.2 sin(5x),0,1] for x�−4 (29)

and the computation covers a domain x ∈[−5,5]. The solution is integrated with a CFL number
equal to 0.3 until t=1.8. A uniform mesh with a total of 401 grid points is used in this case. The
reference solution, computed with a fifth-order accurate WENO scheme with 1601 grid points,
and the initial conditions are shown in Figure 5. Results computed using three different (i.e. TVD,
MUSCL, and WENO) filters are presented. In the first approach, we apply the ACM filter in
the entire computational domain; therefore, no spatial filter is applied. These results are shown
in Figures 6 and 7. In the second approach, shown in Figures 8 and 9, the ACM filter is only
applied in the shock regions and the 10th-order spatial filter is used in the smooth regions. The
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Figure 5. Initial density distribution and final reference solution.
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Figure 6. Density distribution at t=1.8 with TVD filters applied globally.

WENO-type shock detector (Equation (25)) is used to detect the shock regions. The threshold
parameter, 	, is set to 0.01, and the effect of this factor is examined later.

As the results show (using the same grid points) the high-order filters (MUSCL and WENO
filters, Figures 7 and 9) are less dissipative than the low-order filters (TVD filters, Figures 6 and 8).
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Figure 7. Density distribution at t=1.8 with MUSCL and WENO filters applied globally.
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Figure 8. Density distribution at t=1.8 with TVD filters applied locally.

In addition, when the ACM filter is applied in the entire computational domain, it damps out
not only the potential oscillations caused by a numerical instability, but also the physical density
fluctuations behind the main shock. This situation is more pronounced for the TVD filter as shown
in Figures 6 and 8. Adding dissipation to the turbulence fluctuations should be avoided in turbulent

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:473–498
DOI: 10.1002/fld



HIGH-ORDER SHOCK CAPTURING SCHEMES 485

x

rh
o

0 0.5 1 1.5 2 2.5 3
2.5

3

3.5

4

4.5

5

MUSCL-ACM
WENO-ACM
Reference

Figure 9. Density distribution at t=1.8 with MUSCL and WENO filters applied locally.
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Figure 10. Comparison of different � on the WENO filter.

flow simulations such as LES or DNS, because it degrades the accuracy of the solutions. For
high-order filters such as the WENO filter, the difference between the local and global ACM
application is less significant as seen by comparing Figures 7 and 9.

The effects of two parameters, � and 	, are further investigated. Figure 10 compares the results
computed by the local WENO-ACM with three different values, 0.6, 1.0, and 1.4, of the constant
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Figure 11. Comparison of different threshold parameters with Equation (24) on WENO filter.

�, which appears in Equation (16). All results are close to each other and the effect of � on the
WENO filter is insignificant. A value of �=1.0 is used in subsequent cases. The same value of �
is suggested in Reference [12]. For the effect of � on TVD and MUSCL filters, the reader should
refer to Yee et al. [8].

Figures 11 and 12 show the effects of three different threshold parameter values of 	 (0.005,
0.01, and 0.02) on both shock detectors (Equations (24) and (25)). It should be mentioned that
we adopt only the first part (Jameson sensor) of Equation (24), because the curl of the velocity is
not applicable in the one-dimensional case. As the plots show, 	=0.01 is adequate for both shock
detectors, because the variance of the results for the three values of 	 is insignificant. Since the
effects of different values of 	 on the TVD and MUSCL filters are similar to those on the WENO
filter, these results are omitted here. It is worth mentioning that if we pick too large a value of 	 the
code may become unstable because no shock points are filtered. On the other hand, if we choose
too small a value of 	, the results would approach the global filtering results. The instantaneous
distributions of the two shock detector functions using the WENO filter at t=1.8 are shown in
Figures 13 and 14. The threshold values, 	, are also shown by dashed lines. It seems that the main
difference between these two shock sensors is the sharpness of the peaks, and 	=0.01 picks out
not only the main shock but at least two weaker shocks.

3.3. Quasi 1-D inviscid nozzle flow

In contrast to the previous examples which consider a moving shock, this case investigates the
shock capturing ability of the ACM filters for a stationary shock within the diverging portion of a
nozzle [27]. The nozzle cross-sectional area is described by

A(x)=1.398+0.347 tanh(0.8x−4) for 0<x<10 (30)
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Figure 12. Comparison of different threshold parameters with Equation (25) on WENO filter.
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Figure 13. Jameson sensor at t=1.8 computed for the case using WENO-ACM. Dashed lines are the
three different values of 	 (0.005, 0.01 and 0.02).

Here the distance x is measured in feet. The flow at the nozzle inlet is supersonic and has a Mach
number 1.75. The inlet pressure and temperature are 12.5 psi (8.62×104 Pa) and 500 R (277.78K),
respectively. At the nozzle exit, the outflow velocity is 566.43 fps (172.65m/s), which corresponds
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Figure 14. WENO-type sensor at t=1.8 computed for the case using WENO-ACM. Dashed lines are the
three different values of 	 (0.005, 0.01 and 0.02).

to an exit Mach number 0.414. Under this condition, a normal shock stands at the middle of the
nozzle, which has an upstream Mach number 2.1. A uniform mesh with 101 grid points is used
in this case, and the initial condition is directly set up from the analytic solution. The analytic
solution is computed by the area ratio/Mach number relation.

Figure 15 shows the Mach number distributions computed by three different types of ACM
filters. Unlike the moving shock cases, significant oscillations appear near the stationary shock
region, especially for the HYTVD and MUSCL filters. However, these numerical oscillations can
be damped out as shown in Figure 16, if we apply the ACM filter twice at the end of each full
time step. Numerical experiments have shown that as we apply the ACM filter more than twice,
the change of the solution becomes insignificant. Therefore, for the sake of saving computational
time, applying the ACM filter twice for the stationary normal shock is adequate to damp out the
numerical oscillations. It is worth mentioning that for the stationary normal shock this approach
works better than performing the ACM filter at each sub-stage of the Runge–Kutta integration.

To test the effect of applying the ACM filter twice for problems not involving a stationary
normal shock, the 1-D shock/density oscillation interaction case of Section 3.2 was reconsidered.
The results (not shown for brevity) indicate only a minor difference for the WENO filter and a
small but noticeable damping with the other filters. For example, relative to filtering once, applying
the TVD and MUSCL filters twice causes about 3.5 and 2.4% decreasing of the peak values of
density in the region x ∈[0.8,2.2], respectively, while the difference with the WENO filter is less
than 0.9%.

3.4. 2-D viscous shock/vortex interactions

This case is used to investigate the ability of the shock-capturing schemes to predict the generation
and transport of acoustic waves during a shock vortex interaction [28]. A square domain 2L0×2L0
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Figure 15. The Mach number distributions of quasi 1D nozzle flow; ACM filter is applied once.
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Figure 16. The Mach number distributions of quasi 1D nozzle flow; ACM filter is applied twice.

(where L0 is the reference length) is considered. The nondimensional computational domain is
[0,2]×[0,2]. Two uniform grids with 101×101 and 201×201 points are used, just as in the
original reference. The initial condition satisfies the exact Rankine–Hugoniot condition and a
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Figure 17. Schematic of the single vortex interacts with a stationary normal shock.
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Figure 18. Pressure contour of reference solution at t=0.7.

stationary shock is located at x=1. An isolated Taylor vortex is added to the uniform flow and is
described by the tangential velocity

V� =C1re
−C2r2 (31)

with

C1= Uc

rc
e1/2, C2= 1

2r2c
, r =

√
(x−x0)2+(y− y0)2 (32)
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Figure 19. Initial density distribution and final reference solution along y=1 at t=0.7.

where rc=0.075 and Uc=0.25 based on the upstream velocity. The initial position of the vortex
center is (x0, y0)=(0.5,1), and the inflow Mach number is 1.1588. A sketch of the initial condition
is shown in Figure 17. The Reynolds number based on the uniform upstream velocity and the
reference length (L0) is 2000. A nondimensional time step �t=4×10−3 is used and the final
output time is t=0.7. For the local ACM filter cases, the Ducros [24] sensor (Equation (24)) with
a threshold parameter 	=0.01 is used. It should be mentioned that for this low Mach number case
applying the ACM filter once per time step is sufficient to damp out the numerical oscillations
near the shock. Our numerical experiments have shown that the difference between applying the
ACM filter once or twice is quite small.

As the vortex starts to move, it generates a circular acoustic wave which propagates in the radial
direction with respect to the vortex center. As time passes, both the acoustic wave and the vortex
pass through the stationary shock. Different ACM filter schemes are used to compare the accuracy
at both the vortex core and this circular acoustic wave behind the shock. The reference solution is
obtained by the local WENO-ACM approach on a fine uniform grid (401×401).

The pressure contour of the reference solution at t=0.7 is shown in Figure 18. An acoustic
wave is seen spreading outward, as discussed above. Figure 19 shows the density distributions of
the reference solution at t=0.7 and the initial condition along y=1. Along the line of y=1, the
vortex core at t=0.7 is located at x=1.16 and a downstream propagating acoustic wave is around
x=1.75. The density distributions using different types of ACM filters locally and globally on a
coarse uniform grid (101×101) along y=1 at t=0.7 are shown in Figure 20. It can be observed
that applying the TVD filter globally cannot resolve the acoustic wave and preserve the strength
of the vortex core accurately. The WENO filter demonstrates a superior capability of capturing the
acoustic wave and resolving the vortex core compared with the other filters. The results computed
using a finer grid (201×201) are shown in Figure 21. With this grid resolution, all the cases (except
the global HYTVD-ACM approach) resolve the vortex core and the acoustic wave accurately and
become grid independent.
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Figure 20. Instantaneous density distributions ((a): global ACM, (b): local ACM) at t=0.7
along y=1 with a 101×101 grid.
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Figure 21. Instantaneous density distributions ((a): global ACM, (b): local ACM) at t=0.7
along y=1 with a 201×201 grid.

Figure 22 compares the coarse-grid results using three different threshold parameters 	 (0.005,
0.01, and 0.02) on the WENO filter. Similar to the 1-D shock/density oscillation case, the effect
of 	 is insignificant, and all three results overlap with each other.

3.5. Shock/mixing layer interaction

This case is used to test the performance of the shock capturing schemes for interactions of shock
waves and shear layers [8]. A spatially developing mixing layer has an initial convective Mach
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Figure 22. Comparison of different threshold parameters with Ducros sensor on WENO filter.

Figure 23. Schematic of the shock impingement on a spatially developing mixing layer.

number of 0.6, and a 12◦ oblique shock originating from the upper-left corner interacts with the
vortices developed from the instability of the shear layer as shown in Figure 23. This oblique
shock is deflected by the shear layer and then reflects from the bottom slip wall. At the same time,
an expansion fan forms above the shear layer. Downstream, a series of shock waves form around
the vortices. The outflow boundary has been arranged to be supersonic everywhere; therefore, a
simple first-order extrapolation is used as the outflow boundary condition.

The inflow boundary condition has a hyperbolic tangent velocity profile,

u=2.5+0.5tanh(2y) (33)

and the velocities in the upper and lower streams are u1=3 and u2=2, respectively. The convective
Mach number is

Mc= u1−u2
c1+c2

=0.6 (34)
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Figure 24. Density ((a) and (b)) and pressure ((c) and (d)) contours using the HYTVD filter: (a) global
filtering, (max,min)=(2.577,0.335); (b) local filtering, (max,min)=(2.900,0.257); (c) global filtering,

(max,min)=(0.717,0.258); and (d) local filtering, (max,min)=(0.729,0.170).

where c1 and c2 are the free stream sound speeds which equal 0.5333 and 1.1333, respectively. These
nondimensional velocities and speeds of sound are taken directly from the original reference. The
Prandtl number is 0.72 and the Reynolds number based on the velocity jump and vorticity thickness
is 500. More detailed boundary information can be found in the same reference. Fluctuations are
added to the inflow as

v′ =
2∑

k=1
ak cos(2
kt/�+�k)exp(−y2/b) (35)

with period �=�/uc, wavelength �=30, and convective velocity uc=2.68. Other constants are
a1=0.05, �1=0, a2=0.05, �2=
/2, and b=10. This case was run on a 200×40 domain with a
321×81 grid, which is uniform in the x direction but stretched in the y direction with a minimum
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Figure 25. Density ((a) and (b)) and pressure ((c) and (d)) contours using the MUSCL filter: (a) global
filtering, (max,min)=(2.703,0.282); (b) local filtering, (max,min)=(2.946,0.239); (c) global filtering,

(max,min)=(0.708,0.146); and (d) local filtering, (max,min)=(0.704,0.156).

grid spacing �ymin=0.4255. A constant time step is used with �t=0.12 and the final output time
is t=120. The Ducros shock sensor (Equation (24)) with a threshold parameter 	=0.01 is used
as in the previous case.

As the original reference does not provide quantitative comparison, only qualitative results
are presented. Figures 24–26 show the density and pressure contours for each case. From the
figures, the solutions with the TVD filter are more diffused. For example, under the same contour
levels, the shapes of the vortices are not resolved properly, and the shocklets generated by the
vortices in the downstream region are more smeared than the results computed by the other filters.
However, both the MUSCL (Figure 25) and WENO (Figure 26) filters provide high quality vortices
and downstream shocklet resolution. The effect of the shock detector (i.e. local versus global
application of the ACM filter) for the WENO and MUSCL filters is not significant.
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Figure 26. Density ((a) and (b)) and pressure ((c) and (d)) contours using the WENO filter: (a) global
filtering, (max,min)=(2.670,0.296); (b) local filtering, (max,min)=(2.843,0.246); (c) global filtering,

(max,min)=(0.719,0.171); and (d) local filtering, (max,min)=(0.724,0.158).

The computational time was studied for this case and all the results are compared with a base
scheme, which is computed by the compact scheme plus the spatial filter on the same grid. Since
the base scheme does not work for cases with shocks, a uniform flow condition is used instead to
measure its total computational time. For the global ACM filter approaches, HYTVD, MUSCL,
and WENO filters require about 23, 17, and 127% more computational time than the base scheme,
respectively. On the other hand, the increase in computational time for the local ACM approaches
(compared with the base scheme) is about 56, 50, and 160% for HYTVD, MUSCL, and WENO
filters, respectively. It should be mentioned that for the local ACM approach we compute the filter
numerical flux everywhere but apply it only in the shock regions as determined by a shock detector.
This is the reason that the local ACM approach takes more computational time than the global
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approach. A more efficient method would be to compute the filter numerical flux just in the shock
regions.

4. CONCLUSIONS

A Navier–Stokes computational methodology for turbulent supersonic flows based on high-order
compact finite difference schemes and characteristic filters has been developed and tested for
several test cases. These numerical experiments include a shock tube problem, the interactions of
a 1-D moving shock with a sinusoidal density wave, a quasi 1-D nozzle flow, a 2-D stationary
shock with a moving vortex, and a 2-D shock/mixing layer interaction. The results show that
the high-order characteristic filters, such as the WENO filter, perform better than the low-order
filters (such as the TVD and MUSCL filters). Furthermore, the WENO filter is insensitive to the
parameters that appear in both the filter schemes and the original shock capturing schemes. In
addition, from the previous example of a 1-D shock tube problem, the WENO filter can handle
stronger shocks than the other types of ACM filters, but does not dissipate the solution as much
as the TVD filter. The reason for this is still an open issue. A possible explanation is that the
WENO filter does not rely on any limiter functions like the TVD or MUSCL filters; instead it
computes the stencil weights based on the shock location. This may let the WENO filter to add
the dissipation in the shock regions more exactly. Numerical experiments have shown that the
difference between applying the characteristic filter once or twice per time step is small. For
moving shocks, in order to save computational time, applying the filter once is suggested. For some
strong stationary normal shock cases, applying the filter twice may be needed to adequately damp
out the numerical oscillations. In addition, it is found that applying the WENO filter twice does
not cause significant damping in the shock free regions. One disadvantage of the ACM filters for
turbulent flows is the difficulty of distinguishing turbulent fluctuations from shocks. This drawback
can be remedied by using a shock sensor and then applying the ACM filter locally in the shock
regions. At the same time, in order to keep the compact scheme stable, a spatial filter is applied
in the shock-free regions. Two shock sensors are considered (one for 1-D problems and another
for 2-D problems), and both of them work quite well. In order to trigger the shock sensor, a
constant threshold parameter, 0.01, is suggested. This value works well for our 1-D and 2-D test
cases. Through several numerical experiments, the results using the local ACM approach show an
improvement over global application of the filter, especially for the low-order ACM filters.

ACKNOWLEDGEMENTS

The authors would like to thank Helen Yee for her helpful discussions concerning the formulation and
performance of the TVD schemes. The first author gratefully acknowledges the support of the Purdue
Research Foundation (PRF)/Computing Research Institute (CRI) Special Incentive Research Grant (SIRG).

REFERENCES

1. Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1991;
103(1):16–42.

2. Gaitonde DV, Visbal MR. Further development of a Navier–Stokes solution procedure based on high-order
formulas. AIAA Paper 1999-0557, 1999.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:473–498
DOI: 10.1002/fld



498 S.-C. LO, G. A. BLAISDELL AND A. S. LYRINTZIS

3. Visbal MR, Gaitonde DV. High-order-accurate methods for complex unsteady subsonic flows. AIAA Journal
1999; 37(10):1231–1239.

4. Al-Qadi IMA, Scott JN. Simulations of unsteady behavior in under-expanded supersonic rectangular jets. AIAA
Paper 2001-2119, 2001.

5. Bodony DJ, Lele SK. On using large-eddy simulation for the prediction of noise from cold and heated turbulent
jets. Physics of Fluids 2005; 17:085103.

6. Uzun A, Lyrintzis AS, Blaisdell GA. Coupling of integral acoustics methods with LES for jet noise prediction.
International Journal of Aeroacoustics 2004; 3(4):297–346.

7. Xie P, Jiang L, Liu C. Weighted compact scheme and smart-filter for 2-D unsteady shock/boundary layer
interaction. AIAA Paper 2006-306, 2006.

8. Yee HC, Sandham ND, Djomehri MJ. Low-dissipative high-order shock-capturing methods using characteristic-
based filters. Journal of Computational Physics 1999; 150:199–238.

9. Garnier E, Mossi M, Sagaut P, Comte P, Deville M. On the use of shock-capturing schemes for large-eddy
simulation. Journal of Computational Physics 1999; 153:273–311.

10. Lee S, Lele SK, Moin P. Interaction of isotropic turbulence with shock waves: effect of shock strength. Journal
of Fluid Mechanics 1997; 340:225–247.

11. Visbal MR, Gaitonde DV. Shock capturing using compact-differencing-based methods. AIAA Paper 2005-1265,
2005.

12. Garnier E, Sagaut P, Deville M. A class of explicit ENO filters with applications to unsteady flows. Journal of
Computational Physics 2001; 170(1):184–204.

13. Lo S-C, Blaisdell GA, Lyrintzis AS. High-order shock capturing schemes for turbulence calculations. AIAA Paper
2007-827, 2007.

14. Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal
of Computational Physics 1989; 83:32–78.

15. Gaitonde DV, Visbal MR. High-order schemes for Navier–Stokes equations: algorithm and implementation into
FDL3DI. AFRL-VA-WP-TR-1998-3060, August 1998.

16. Harten A. The artificial compression method for computation of shocks and contact discontinuities: III. Self-
adjusting hybrid schemes. Mathematics of Computation 1978; 32(142):363–389.

17. Roe PL. Approximate Riemann solvers, parameter vector, and difference schemes. Journal of Computational
Physics 1981; 43:357–372.

18. Yee HC. Upwind and symmetric shock-capturing schemes. NASA TM-89464, May 1987.
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